Samstag, 31. Dezember 2022

Wie gut hat der Schachweltmeister abgeschnitten?

Thema: Schachturniere und Gleichungssysteme

Dieser Beitrag ist am 13.01.2023 auch im Standard erschienen.

Der  Norweger Magnus Carlsen ist seit Ende dieses Jahres Weltmeister aller drei großen Schachdisziplinen (klassisches Schach, Schnellschach und Blitzschach). In einem Standard-Artikel wird näher darauf eingangen, wie gut der amtierende Weltmeister bei der Blitzschach-WM abgeschnitten hat. Da ich selbst kein großer Schachfan bin, kann ich darüber wenig sagen,  aber ich habe mich gefragt, ob ich anhand der erwähnten Informationen ermitteln kann, wie seine Spiele ausgegangen sind.

Resultat des technischen Werkunterrichts als Symbolbild (Bildquelle: Johannes C. Huber)

Um zu verstehen, wie die Gesamtpunktzahl zustande kommt, reicht es aus zu wissen, wie viel Punkte es für die verschiedenen Ausgänge eines Spiels gibt. Für einen Sieg erhält man einen Punkt und für ein Remis (Unentschieden) einen halben.  Wir wissen, dass er Runde 1 bis 5 sowie Runde 17 bis 21 gewonnen hat. Außerdem sind mindestens fünf seiner Spiele unentschieden ausgegangen (Runde 8 bis 12) und er hat mindestens zweimal verloren (in Runde 15 gegen Nepomnjaschtschi und in Runde 16 gegen Sarana).

Nach dem ersten Tag lag er einen Punkt hinter seinem Konkurrenten Nakamura und hat demnach insgesamt 9 Punkte erzielt. Wir wissen über den Ausgang von zehn der zwölf Spiele Bescheid: fünf Siege und fünf Remisen ergibt 7,5 Punkte. Also bleibt nur eine Möglichkeit: Eines der beiden verbleibenden Spiele muss unentschieden ausgegangen sein und das andere hat er gewonnen. Im Artikel wird erwähnt, dass er das Turnier mit fünf Siegen en suite begonnen hat. Dementsprechend müsste Runde 6 ein Remis und Runde 7 ein weiterer Sieg gewesen sein.

Nun zum zweiten Spieltag. Wir wissen über den Ausgang von sieben der verbleibenden neun Spiele Bescheid: fünf Siege und zwei Niederlagen ergibt 5 Punkte. Demnach muss er die beiden verbleibenden Spiele ebenfalls gewonnen haben, um insgesamt auf 16 Punkte zu kommen. Er hat also 13 Punkte durch 13 Siege und 3 Punkte durch 6 Remisen erzielt. Ein kurzer Vergleich mit den tatsächlichen Resultaten bestätigt unsere Vermutung.

Können wir die Ausgänge der Spiele (ohne die tatsächliche Reihenfolge) auch ermitteln, wenn wir nur die Anzahl der Spiele und die Gesamtpunktzahl kennen? Die Antwort ist einfach: Leider nicht. Wir können zwar ein Gleichungssystem für die Anzahl der Punkte und eines für die Anzahl der Spiele aufstellen. Allerdings dürfen wir dabei nicht vergessen, dass es bei den Punkten auch einen dritten möglichen Ausgang gibt, und zwar 0 Punkte für eine Niederlage zu bekommen. In diesem Fall steht x für die Anzahl der Siege, y für die der Remisen und z für die der Niederlagen:


Wir haben also drei Unbekannte, aber nur zwei Gleichungen und können deshalb keine eindeutige Lösung finden. Eine allgemeine Lösung der beiden Gleichungssysteme lautet wie folgt:

Da uns nur positive ganzzahlige Lösungen interessieren, sind folgende Spielbilanzen möglich:

  • 16 Siege, 0 Remisen, 5 Niederlagen
  • 15 Siege, 2 Remisen, 4 Niederlagen
  • 14 Siege, 4 Remisen, 3 Niederlagen
  • 13 Siege, 6 Remisen, 2 Niederlagen
  • 12 Siege, 8 Remisen, 1 Niederlagen
  • 11 Siege, 10 Remisen, 0 Niederlagen
Ohne zusätzliche Informationen (im Idealfall die Anzahl der Niederlagen) können wir also im Allgemeinen nicht eindeutig feststellen, wie alle Spiele ausgegangen sind. Wir hätten aber immerhin herausgefunden, dass er auf jeden Fall die Mehrheit davon gewonnen hat.*

An dieser Stelle ein herzliches Dankeschön für wertvollen Input von Michael H.!

Johannes C. Huber (beschäftigt sich lieber mit schachmathematischen Aufgaben als selbst zu spielen)

* Wir könnten die Möglichkeiten noch weiter eingrenzen, wenn wir berücksichtigen, welche davon in Kombination mit den Spielbilanzen aller anderen Spieler möglich wären.